

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Carbon-Negative Soda Ash (CODA)

1. Statuskonferenz KlimPro Industrie

<u>Peter Schulze,</u> Somayyeh Ghaffari, Maria F. Gutierrez, Heike Lorenz

> 26.04.2023 Berlin

Soda Ash - Na₂CO₃ Anhydrate

Soda ash (Na₂CO₃) facts

Globaly **56 million metric tons/a** produced (Top10 of inorganic commodity chemicals):

- **48** % by Ammonia-Soda (Solvay) process (250-300€/t)
- **27** % from natural sodium carbonate minerals
- 25 % other methods

Ammonia-Soda Process

• 1864 by Ernest Solvay, one of first highly integrated process but based on fossil carbon/ energy sources

Czaplicka N, Konopacka-Łyskawa D. SN Applied Sciences. 2019 May;1(5):1-8 https://en.wikipedia.org/wiki/Solvay_process#/media/File:Solvay_process_reaction_scheme.svg

Applications

CODA Concept

400 year year year	kg CO_2 /t (~1M m ³ air Air > 400 ppm CO_2				Air < 400 ppm CO ₂	*** *** *** ***	Ma Eco •
	∼2.5 MWh/t Renewable energies	2NaOH _(aq) + C	$O_{2(g)} \rightarrow H_2O$) _(I) + Na ₂ CO _{3 (a}	Soda ash to the market		• →
	1100 kg /t NaCl Brine	Electrolysis	Absorption	Crystallization	Hydrogen and Chlorine to the market or further processing		Tec •
Cavern		C)DA Proce	SS	19 kg H _{2 (g)} + 700kg Cl _{2 (g)} (or 2HCl)	H ₂ Cl ₂	• →v

- CO₂ Direct Air Capture (DAC) towards Climate Change mitigation* (Climate Positive)
- Based on green energy (high electrification level)
- Carbon Negative (500CDA+400CCU kg CO₂/t soda ash)
- Additional valuable products Hydrogen and Chlorine (or HCl by bipolar electrodialysis)
- No (much less) Chloride and ammonia effluents, no land fills *According to the IPCC (Intergovernmental Panel on Climate Change), CO2 emissions must be reduced by about 30-80% by 2050

- Max. productivity (kg/m³/h)
- Min. energy consumption (kWh/kg)
- \rightarrow Min. CAPEX + OPEX

Technical:

- Air T and RH changes (day/night, summer/winter)
- Renewable energy fluctuations
 →weather dependence

Fundamentals of CO₂ Absorption

- ✓ Experimental investigation of CO2 absorption in carbonated sodium hydroxide solutions
- ✓ Dynamic model of the absorption process based on lit. and exp. Data
 - > Predict mass transfer coefficient at different conditions (T, C) for absorber design

Somayyeh Ghaffari, Maria F. Gutierrez, Andreas Seidel-Morgenstern, Heike Lorenz, and Peter Schulze. Sodium Hydroxide-Based CO2 Direct Air Capture for Soda Ash Production—Fundamentals for Process Engineering. Industrial & Engineering Chemistry Research, 2023. DOI: 10.1021/acs.iecr.3c00357

CO₂ DAC Process Development

Specific DAC challenges:

- Operation up to saturation concentrations of CO₃²⁻ → crystallization of Na₂CO₃·10H₂O possible (e.g. air T and RH changes)
- \rightarrow no packed absorption column

MonoDisperse Droplet Absorber MDDA:

- Simple design: Nozzle head and pipe, no packing
- Low pressure drops (liquid and gas)

 Our setup cocurrent- Only pump

 Our setup countercurrent-Only pump

 Our optimized nozzle cocurrent

 Structured packing, countercurrent (Mazzotti, 2013)- Only fan
 Structured packing, crossflow (Holmes,2012)-

Only fan Spray absorber (Stolaroff, 2008)

08)

Crystallization Process Development

Specific crystallization challenges

- Changing feeds from DAC
- Quality (size, bulk density and purity)
- Energy demand (water evaporation)

Two general process routes:

- a) Crystallization of
 Decahydrate in DAC
 → slower DAC, less
 energy consumption
- b) No crystallization of Decahydrate in DAC → faster DAC, more energy

Decahydrate crystalls from cooling cryst.

Process design

→Solubility and metastable zone widths data of NaOH/Na₂CO₃/H₂O (literature+own exp.) →Crystallization kinetics (each hydrate) (own exp.)

Engineering of Pilot Plant

Ongoning and upcoming:

- Engineering for TRL5 pilot plant at CIECH industrial site (10 t/d)
- Minimize investment and operational costs for (stay in budget)
- Find proper plant manufacturer

Summary and Outlook

Challenges

- Solvay process to be replaced by an environmental friendly and sustainable process
- CO₂ DAC is necessary to reach climate goals
- CODA economy heavily depends on energy price → green power plant at site
- Strong dependence of DAC on weather conditions (T and RH)

Solutions

- Special MDDA absorber for DAC (tolerates crystallization)
- Options for robust crystallization process design with optimal heat integration and target product quality
- Process design and optimization by combination of modelling and experiments

Outlook

- Finish crystallization process development
- Overall integrated process optimization (min. CAPEX and OPEX)
- Industrial pilot plant (10t/d) engineering, construction and testing until 2025 (lead my CIECH)

Acknowledgements

Thank you

Thank you for your attention!

Crystals of soda ash on a sodium hydroxide droplet in contact with air

100µm